
MASTERING LINUX

apcmag.com  mastering linux  part 51

MASTERING LINUX

  part 5 2

working at the console

Skill level
Beginner

Requirements
An installation of Linux
(Fedora Core 3 was used
for this article).

Time to complete
3 hours (approx)

n The F10 key brings up the menu in emacs. From there, select the letter corresponding to the menu
option you want.1

Part 3 of this series (APC February, page 98) APC February, page 98) APC

provided an introduction to the Linux command

line console, demonstrating how to work with the

file system. But the command line is useful for so

much more than managing data.

In the days before graphical user interfaces

(GUIs), everything had to be done via the

command line. Even applications such as word

processors, where WYSIWYG interfaces are now

taken for granted, once ran in a command line

environment. While using the GUI is an

aesthetically pleasing way of doing things, there

are many occasions where it may not be available.

Knowing how to perform tasks via the command

line is extremely handy and more efficient.

TEXT EDITING
Editing text files is one of the most fundamental

tasks you can perform under Linux for a multitude

of reasons. For instance, almost all configuration

and script files under Linux are text files of some

description.

The lightweight vi application is one of the

more ubiquitous text editors under Linux and

Unix and is ideal for creating and editing text files

quickly. It’s very rare to come across a Linux

installation that doesn’t include vi, even if a

minimal OS installation has been performed.

Start the vi editor with the vi command.

Launching vi in this manner will display an almost

Mastering Linux, part 5
Having demystified the X Windows desktop, Jarrod Spiga returns

to the command line console to explain some of its more

advanced functions.

blank screen, allowing the creation of a new file.

However, most users find it easier to launch vi

by passing the name of the file they wish to

create or edit as an argument to the command.

For example, to create or edit a file named

“readme.txt” in your home directory, you

could use:

vi ~/readme.txt

If you’re editing an existing file, vi will display the

contents of the beginning of that file on all lines of

the screen except the last. This line is reserved for

information about what’s happening within the

application. Upon loading a file, the bottom line

will display the name of the file, how many lines

and characters it contains, the line and column

position of the cursor and any other detail about

the file that it can provide (for example, if you’re at

the top of the file).

If you’re creating a new file, vi won’t display

much. A tilde (~) character will appear at the

beginning of each line of the screen indicating

that all lines are blank. Much like when editing a

file, the bottom line will also display the name of

the file that you are editing (and the fact that it’s a

new file), the line and column position of the

cursor, and the status (in this case, that all of the

file is being displayed).

MODES OF OPERATION
When vi is loaded, it runs in command mode

— instead of being included in the document,

any text that you enter will appear at the bottom

of the screen and will be interpreted by the

application as a command. Command mode application as a command. Command mode

allows you to save the changes you’ve made allows you to save the changes you’ve made

to the document, perform searches within the to the document, perform searches within the

document, browse through the document (using document, browse through the document (using

the Arrow, Page Up and Page Down keys) and the Arrow, Page Up and Page Down keys) and

other functions. other functions.

This is useful for displaying the text inside a

file (even if that file is empty), but what if you file (even if that file is empty), but what if you

want to perform some editing tasks? In order to want to perform some editing tasks? In order to

make changes, you’ll need to put vi into insert or make changes, you’ll need to put vi into insert or

replace mode. replace mode.

As you’d expect, insert mode allows you to

insert text into the document (an insert cursor), insert text into the document (an insert cursor),

while replace mode allows you change the text in while replace mode allows you change the text in

the document (an overwrite cursor). Switch to the document (an overwrite cursor). Switch to

insert mode by pressing the Insert key once while insert mode by pressing the Insert key once while

in command mode. Hitting Insert again will switch in command mode. Hitting Insert again will switch

you to replace mode. Alternatively, hitting I in you to replace mode. Alternatively, hitting I in

command mode will switch you to insert mode,

while entering R in command mode will take you

straight to replace mode.

MASTERING LINUX

  part 51

MASTERING LINUX

apcmag.com  mastering linux  part 5 2

working at the console

In either mode you can enter text

and it will appear inside the document

where the cursor is located. When you reach

the end of a line on the screen, your text will

start to appear on the next line.

But be careful — a carriage return hasn’t

actually been entered here, so you’re still

typing on the first line of your document. In

other words, vi doesn’t have a word

wrapping function, and you’ll need to press

Enter every time you intentionally want to

start a new line. If you fill the entire screen

without pressing Enter, your document will

be saved as a file with one very long string

of text.

COMMAND MODE
When you’ve finished changing your

document, press the Escape key to return

to command mode. You can perform some

editing functions in command mode, you

just can’t enter text into the document.

Here’s a list of frequently used commands:

Command Action

Left arrow+h
Moves the cursor one
character to the left

Right arrow+l
Moves the cursor one
character to the right

Up arrow+k
Moves the cursor up one line
of text (not one line on the
display)

Down arrow+j
Moves the cursor down one
line of text

dd
Deletes the line that the
cursor is on

d<number>
Deletes the number of
characters under and to the
right of the cursor

Insert, i Insert mode

r Replace mode

/<string>
Find the next occurrence of
the search string in the file

:<number> Go to line number

:w Write file

:q / :q! Quit vi / Quit vi with override

:help Displays help screens

SAVING AND EXITING
Saving the changes you’ve made is fairly

straightforward by entering :w from the

command mode. If you’d like to save your

changes under a different filename, specify

that filename after the write command (for

instance, :w saveas.txt). However, exiting

from vi isn’t always so simple.

In order to prevent accidental data loss,

vi won’t exit unless you’ve saved any

changes that you’ve made to your file. If you

save your file first, vi will allow you to exit

when the :q command is issued. If you

haven’t saved your work, it will tell you.

But what happens if you’ve made some

changes to a file, but you want to get out of

vi without committing to them? In this case,

you’ll need to override vi’s checks by adding

an exclamation mark to the end of the

command (:q!). This will force vi to exit,

discarding any changes that you’ve made

since your last save operation.

THE EMACS TEXT EDITOR
The advantage to using vi is that it adopts

the KISS approach (Keep It Simple, Stupid!).

This is great for making quick changes to

text files, but its minimalist feel can be

frustrating.

Another frequently used text editor is

emacs — an extensible and programmable

editor that seems to have limitless

functionality. This extensibility makes it

much easier to use, especially for people

who are new to Linux and Unix. However,

there’s a lot more to know about emacs,

from how to use it to edit files, to

programming using the emacs LISP

language.

Launch the emacs editor in much the

same way as you launched vi — execute the

emacs command with the name of the file

you’d like to edit as an argument:

emacs readme.txt

Depending on the configuration of your

Linux PC, emacs may take a few seconds to

start up. Remember, it’s much larger and

more complex than vi, so it takes longer to

load into memory.

Once emacs loads up, you’ll see a screen

similar to that of vi, with two differences.

The first is what appears to be a menu

across the top of the screen. And secondly,

the status bar at the bottom of the screen

appears over two lines and contains much

more detail.

Emacs is easier to use than vi, you don’t

have to be concerned about which mode

you’re in. If you start typing, your text will

go straight into the document. Also, the

Arrow, Page, Home and End keys all operate

as you’d expect them to. But there are also

some similarities. Emacs doesn’t perform

word wrapping either, so if you don’t

enforce your carriage returns you’ll be left

with a big, single-lined file.

DECEPTIVE APPEARANCES
While the line at the top of the emacs editor

looks like a menu, it isn’t. However, if you

hit the F10 key, the emacs screen will split

in two, revealing the menu options you can

select with a few key presses in the lower

half. For instance, hitting the F key after

bringing up the menu in this fashion will

display the options you’d normally expect

to see under a file menu. If you then hit the

S key, all changes you’ve made to the file

will be committed to disk.

n1 This isn’t the only way to access n This isn’t the only way to access n
commands from within emacs. In a similar

way to Windows applications, pressing

keys in conjunction with the Control key

can perform a variety of tasks. For instance,

Ctrl+X followed by Ctrl+S will save the

changes to your file, or Ctrl+X followed by

Ctrl+C will exit out of emacs.

Armed with this information, you should

now be able to perform most editing

functions under both vi and emacs. There

are literally thousands of other uses for

emacs in particular, so if you’re the

adventurous type, feel free to explore the

emacs manual online at www.delorie.com/
gnu/docs/emacs/emacs_toc.html.

GROUPING FILES ON THE COMMAND LINE
Part 3 of this series demonstrated a number

of commands that could be performed to

help you manage the data on the Linux

file system. When these commands were

entered, you would have only used one file

with each command. However, it’s possible

to use a number of wild-card characters to

group many filenames for processing by a

single command at any given time.

For instance, let’s assume you’ve used vi

and/or emacs to create a small library of

text files in your home directory. And

further that you want to move these files to

a more manageable location — a docs

directory under your home directory. Using

the knowledge gained a couple of months

ago, you could enter in the following

commands to achieve the task:

mkdir docs
mv document1.txt docs
mv document2.txt docs
mv document3.txt docs

The same result can be achieved using:

mkdir docs
mv document1.txt document2.txt
document3.txt docs

While this method is a little quicker, you

still have to type out the complete name

MASTERING LINUX

apcmag.com  mastering linux  part 53

MASTERING LINUX

  part 5 4

working at the console

of each document — frustrating if you

have to move a lot of files.

The solution is to use file-grouping

techniques. The most common way is by

substituting an asterisk (*) for a section of

the filename, leaving the components of

the filename that are common to all of the

files you’d like to perform the command

on. Enter:

mkdir docs
mv *.txt docs

When the command shell processes the

second line, it substitutes *.txt with all of

the files that end with .txt. Going back to the

original scenario, the same result could be

achieved with:

mv docu* docs

This command makes the shell replace the

docu* file grouping with the file names of

all files that begin with docu, moving all of

those documents to the docs directory.

DIRECTORIES INCLUDED
Did you notice that doc* wasn’t used for the

grouping? If it was, the mv command would

have returned a warning, telling you that

you won’t be able to move the docs folder

inside itself because the docs directory also

fits this group mask. Files and directories

can be grouped using the asterisk (along

with any other grouping symbol), which is

why the “u” was added.

As hinted at earlier, the asterisk character

isn’t the only one that can be used to group

files. Below is a table containing the most

frequently substituted characters, followed

by another table containing sample

commands and their effects:

Pattern Effect
* Matches any amount of any

characters

? Matches one of any
character

[a-d] Matches a single character
in the range of a through to
d. i.e. a, b, c or d

[abc] Matches a single character
from the list provided

Command Effect
rm *.txt Deletes all files ending

with “.txt”

Rm d*.txt Deletes all files beginning
with “d” and ending with
“.txt”

Rm document?.txt Deletes all files starting
with document, with a single
character following, and
ending with .txt

Rm [b-f]rat.txt Deletes brat.txt, crat.txt,
erat.txt and frat.txt

Rm [jkl]* Deletes all files beginning
with j, k or l

Rm ? Deletes all files with one
character in their file name

EXPANSION CONTROL
So, what happens if you want to create a

file or directory that contains an asterisk,

question mark or bracket? Surprisingly,

these characters aren’t reserved and can be

used in file and directory names, although

it’s a little tricky.

In order to use these characters, you

need to quote your proposed file name

inside either single or double quotation

marks. For example:

Touch 'why?'

Be wary of using these characters in

filenames because you’ll have to remember

to encapsulate the filename in quotes every

time you refer to it.

LOOKING FOR STUFF
In the past, you’ve used the ls command

to generate listings of all files in a directory.

If you needed to search the file system

for a particular file, you could generate

a directory listing for all of the locations

where you suspect the file may be, but this

would be tedious and you still may not

find it. What’s more, as your file system

grows you’ll have to manually look through

thousands of files in hundreds of different

directories. It becomes like looking for a

needle in a haystack.

Because Linux has many small tools that

perform small functions, it comes as no

surprise that there are a couple of search

tools available. The find and locate tools

allow you to track down files, but work in

very different ways.

LOCATION, LOCATION
Your Linux system is scheduled to perform

maintenance on the file system and its

applications on a regular basis. One task

it performs during this maintenance is to

update a database of all of the files on your

system and where they are located.

The locate command will search this

database for the filename or filenames

(perhaps using wild-cards) you nominate,

and return the full path to all files matching

the supplied criteria. For example, to search

for all files ending with .txt on your system,

use the following command:

locate *.txt

FINDERS KEEPERS
The find command effectively performs

the same function but uses a completely

different methodology. When you run this

command, it manually searches the file

system for results that match your criteria

and then displays them.

The syntax for the find command is

somewhat more complicated — you need

to supply a search location, the search

criteria, and an argument stating what you

want to do with the output of the command.

In order to get the results printed to your

screen in the same way as the locate

command, use the following syntax:

find location1 [location2 ...] -name criteria
-print

The find command will then search the

location1 directory and all subdirectories

(as well as location2 , if specified) for files

that match the criteria. Finally, the result is

printed to the screen. To search for all .txt

files in your home directory using the find

command, enter:

find ~ -name *.txt -print

WHICH ONE TO USE?
Because the find command manually

searches the file system, it takes significantly

longer to run. However, because the locate

command refers to a database that’s only

updated daily (although this can easily be

changed), the find command is much more

accurate.

It’s always best to use the right tool

for the right task — even though it’s

possible to use a pair of pliers to tighten a

nut and bolt, you wouldn’t do so because

using a set of spanners is so much easier.

For the same reasons, locate should be

used when you need to quickly search

large sections of the file system, while

find should be used when you require

accurate results on a small section of the

file system.

SMOKIN’ PIPES
If you entered the locate command on your

system, a long list of text files would have

quickly scrolled past your view. At the

MASTERING LINUX

  part 53

MASTERING LINUX

apcmag.com  mastering linux  part 5 4

working at the console

console, there’s no quick or easy way

to scroll up and see what’s scrolled off the

screen, so how do you get the chance to

read what the locate command puts out

before it disappears?

Another tool found on most Linux

systems is more (on other systems, a similar

tool called less also exists though both

effectively perform the same task). When

used by itself, the more tool does nothing

because it takes the input supplied and

displays one screen at a time. While locate

can display a lot of text on the screen, more

can take that text and display it one screen

at a time. To get locate’s output and use it

as the input to the more tool, you need to

use a pipe:

locate *.txt | more

nn2n When run, the first screen of text n When run, the first screen of text n
generated by the locate command is

displayed, along with a prompt at the

bottom of the screen. Pressing the space bar

will display the next page of text.

Another tool to pipe data into is the

grep command. Grep is a filter tool that

reduces the amount of data that is output

from a command. To demonstrate, look at

the following syntax:

locate * | grep .txt

In this example, the locate command

returns a list of the locations of all files on

your system. As you can imagine, this list

is extremely long. However, the output

is being piped into the grep tool, which

applies a filter on all of the lines output

by locate, and only displays the lines

containing the .txt string. In essence,

it’s generating a list of .txt files on the

file system in a similar manner to the

locate *.txt command.

REDIRECTING THE OUTPUT
Piping the output to the more command is

just one way you can manage the flow of

information across your screen. Another is

to redirect the output of the command so

that it’s placed inside a text file instead of

being displayed on the screen.

To do this, simply use a greater-than sign

(>) after the command, followed by the

name of the file you want to put the output

of the command in. For instance:

locate *.txt > textfiles.txt

The locate command takes a while to run,

but when it completes, you’ll be given

another prompt.

No output is displayed on the screen

because it has all been redirected to the

file that you specified. Once the command

has completed running, load up the

textfiles.txt file in your editor (vi or emacs)

and you should have a listing of all text files

on your system.

ANSWER OR ARGUMENT?
Another way to utilise more than one

command at once is command substitution,

where the output from one command is

used as part of the input to another.

Imagine you have an images directory

located under the home directory. Not

only are there a few hundred JPEG images

strewn across a couple of dozen

subdirectories, there are also text files

describing each image. To quickly make

an image gallery containing every JPEG

file in every subdirectory, use the following

commands:

mkdir gallery
ln -s $(locate '*.jpg' |grep /home/jspiga/
images/) gallery

The first line creates a directory named

gallery. When the second line is executed,

the first command that is run is the locate

command, which generates a listing of

all files on the system matching the

argument — in this case, all jpg images

on your file system.

The output from this command is then

piped into the grep command, which filters

the output from locate to leave you with

a list of JPEGs under the images directory

in the home directory. Lastly, the output

is then substituted as an argument to the

ln command, which creates symbolic

links when used in conjunction with the

-s switch.

When run, this command creates a

shortcut to all JPEG images under the

images directory. These shortcuts are all

stored under the gallery directory. But

why shortcuts? Why have two copies of a

file on your hard disk when you can just link

to the first and save space?

In order to use a command substitution,

prepend your substituted command with

$(and append it with) .

PAUSING PROCESSES
One of the advantages to using a GUI is

that you can switch between running tasks

by simply changing which window is in

focus. You can also switch tasks under the

command line console.

To pause a process from the command

line, the Ctrl+Z key combination can

be used. For example, load up a file in

the vi editor, make a few changes and

hit Ctrl+Z. You’ll be taken back to the

command prompt and a line similar

to the following will appear above

the cursor:

[1]+ Stopped vim sample.txt

This tells you that the vi process has

been stopped for the time being (more

technically, it’s sleeping — still active in

n Piping output to the Piping output to the moremore command allows you to go through the output one screen at a time. command allows you to go through the output one screen at a time.2

MASTERING LINUX

apcmag.com  mastering linux  part 55

MASTERING LINUX

  part 5 6

working at the console

memory, but awaiting instructions).

The number between the brackets

tells you the job number that’s been

assigned to the task — in this case

the vi task is job number 1. This job

number is critical to switching between

applications.

Load up another vi editor, make some

edits and again, hit Ctrl+Z. This time, the

following appears:

[2]+ Stopped vim sample2.txt

As you can see, this vi task has been given a

job number of 2 . In order to get a list of all

jobs currently running or suspended, use

the jobs command. This will show similar

detail to the two lines above.

To resume an application, simply

execute the fg (foreground) command

and pass a percentage sign, followed by

the job number to indicate which task you

want to resume:

fg %1

Your initial vi session should pop up

again and you can resume where you

left off.

THE RUNNER IN THE BACKGROUND
A short time ago, you would’ve run

the locate command while redirecting

the output to a text file. Depending on

the speed of your Linux PC, this process

could have taken a couple of minutes to

run. Or you could hit Ctrl+Z while the

command is executing and resume it at a

more convenient time. That way, you

won’t have to sit around waiting for

the task to finish before running your

next command.

Lastly, you could run the command in

the background by placing an ampersand at

the end of your command:

locate *.txt > textfiles.txt &

The ampersand tells the shell to run the

command in the background. Executing the

command would have returned something

like this:

[3] 3807

The number in brackets relates to the

job number given to the task. Indeed, if

you run the jobs command, you should

see the task running in the background.

The latter number refers to the process

identification number (pid) of the task.

We’ll cover pids in greater detail in a future

instalment of this series.

PUSHING IT BACK
Assume for a minute that you did run the

locate command in the foreground and

then hit Ctrl+Z to suspend it. You don’t

actually have to wait until you go away

from the system to let the command run

without interfering with your command line

usage — simply make the process continue

to run in the background using the bg

(background) command:

bg %3

When any background task is completed, a

message similar to the following will appear

on your screen after you’ve entered the next

command:

[3] Exit 1 locate *.txt > textfiles.txt &

Note that the ampersand appears at the

end of the command, even if you didn’t

launch the process in the background.

This just tells you that the task ran in the

background.

KILLING YOUR JOB PROSPECTS
If you suspend a job and then decide

you don’t need to continue working

on it (or one of your jobs crashes or

stops responding), you can always

cancel the job. Not surprisingly, the

kill command allows you to do this. So,

in order to terminate the other vi task that

was running, enter:

kill %2

Note that the application will be removed

from memory in the state it’s in — you

won’t be prompted to save your data before

killing a process.

RTFM: READ THE FREAKIN’ MANUAL
If you haven’t encountered the RTFM

abbreviation before, you will see it

whenever you ask for help in relation to

Linux. While Fedora Core 3 doesn’t come

with printed manuals, there’s a wealth of

knowledge in the electronic man (manual)

pages.

For instance, to find out more

information about the ls command, run:

man ls

n3 A screen similar to a vi screen will appear. n A screen similar to a vi screen will appear. n
The man page for each command explains

in detail exactly what it does, its syntax

and what arguments can be used with it.

To scroll to the next page in the document,

hit the space bar. The B key will take

you up one page. Entering a forward

slash (/) followed by a search string will

search the document for that string,

while the Q key will exit the man page

viewer.

Next month . . .

In next month’s Mastering Linux guide,
we’ll head back into X Windows and take
you through a number of the
applications in day-to-day Linux use.

n The man pages look similar to the vi editor, but they can’t be edited.The man pages look similar to the vi editor, but they can’t be edited.3

